2. E. S. Pearson, H. O. Hartley, Biometrika Tables for Statisticians, v. 1, Cambridge University Press, London, 1954, p. 104-111.
3. R. D. Gordon, "Values of Mill's ratio of area to bounding ordinate of the normal probability integral for large values of the argument," Ann. Math. Stat., v. 12, 1941, p. 364-366.
$58[\mathrm{~K}]$.-A. E. Sarhan \& B. G. Greenberg, "Tables for best linear estimates by order statistics of parameters of single exponential distributions from singly and doubly censored samples," Amer. Stat. Assn., Jn., v. 52, 1957, p. 58-87.
Tables are provided for the exact coefficients of the best linear systematic statistics for estimating the scale parameter of a one-parameter single exponential distribution and the scale and location parameters of a two-parameter single exponential distribution. All possible combinations of samples of size n with the r_{1} lowest and r_{2} highest values censored are considered for $n \leqq 10$. Exact coefficients for the best linear systematic statistic for estimating the mean (equal to the location parameter plus the scale parameter) are also given for the two parameter case. Other tables give the variances, exact or to $7 D$, of the estimates obtained and the efficiency relative to the best linear estimate to $4 D$ based on the complete sample. These extensive tables are of immediate practical importance in many fields, such as life testing and biological experimentation.

C. A. Bennett

Hanford Laboratories Operation
General Electric Company
Richland, Washington
$\mathbf{5 9 [K]}$.-Y. S. Sathe \& A. R. Kamat, "Approximations to the distributions of some measures of dispersion based on successive differences," Biometrika, v. 44, 1957, p. 349-359.

Let x_{1}, \cdots, x_{n} be a random sample from a normal population with variance σ^{2} and let

$$
\begin{array}{cl}
\delta^{2}=\frac{1}{n-1} \sum_{i=1}^{n-1}\left(x_{i}-x_{i+1}\right)^{2}, & d=\frac{1}{n-1} \sum_{i=1}^{n-1}\left|x_{i}-x_{i+1}\right| \\
\delta_{2}^{2}=\frac{1}{n-2} \sum_{i=1}^{n-2}\left(x_{i}-2 x_{i+1}+x_{i+2}\right)^{2}, & d_{2}=\frac{1}{n-2} \sum_{i=1}^{n-2}\left|x_{i}-2 x_{i+1}+x_{i+2}\right| .
\end{array}
$$

The problem is to develo ρ approximations to the distributions of these four types of statistics. Let u be any one of these statistics. The method followed is to assume that u is approximately distributed as $\left(\chi_{\nu}{ }^{2} / c\right)^{\alpha}$, where $\chi_{\nu}{ }^{2}$ has a chi-square distribution with ν degrees of freedom; that is, taking $\lambda=1 / \alpha$, that $c u^{\lambda}$ is approximately distributed as χ^{2} with ν degrees of freedom. The constants c, α (or λ), and ν are then determined by equating the first three moments of u to those of $\left(\chi_{\nu}{ }^{2} / c\right)^{\alpha}$. The results show that a fixed value can be used for α (or λ) if $n \geqq 5$. This allows two independent measures of variability u_{1} and u_{2}, based on the same type of statistic, to be compared by use of the F test when $n \geqq 5$ for both statistics. The basic results of the paper are given in Table 1. There, for each of $\delta^{2} / \sigma^{2}, d / \sigma, \delta_{2}{ }^{2} / \sigma^{2}$, and d_{2} / σ, fixed values are stated for λ, while $3 D$ values for ν and $4 D$ values for $\log _{10} c$ are given for $n=5(1) 20,25,30,40,50$. Table 2 deals with an example. Table 3 lists the results of some approximations to δ^{2} / σ^{2} by $\left(\chi_{\nu}{ }^{2} / c\right)^{\alpha}$ for $n=5,10,20,30,50$. Table 4 lists for comparison purposes, the upper and lower 1% and 5% points for four

